Step of Proof: complete_nat_ind_with_y
12,41
postcript
pdf
Inference at
*
1
1
1
I
of proof for Lemma
complete
nat
ind
with
y
:
.....assertion..... NILNIL
1.
P
:
{k}
2.
g
:
i
:
. (
j
:
i
.
P
(
j
))
P
(
i
)
Y(
f
,
x
.
g
(
x
,
f
))
Void
Void
latex
by ((Rewrite (HigherC YUnrollC) 0)
CollapseTHEN (Reduce 0))
latex
C
1
:
C1:
(
x
.
g
(
x
,Y(
f
,
x
.
g
(
x
,
f
))))
Void
Void
C
.
Definitions
Y
origin